3.410 \(\int \frac {\tan ^2(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\)

Optimal. Leaf size=80 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {b} f}-\frac {\tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {a} f} \]

[Out]

-arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f/a^(1/2)+arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^
2)^(1/2))/f/b^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {4141, 1975, 483, 217, 206, 377, 203} \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {b} f}-\frac {\tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {a} f} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^2/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

-(ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]]/(Sqrt[a]*f)) + ArcTanh[(Sqrt[b]*Tan[e + f*x])/
Sqrt[a + b + b*Tan[e + f*x]^2]]/(Sqrt[b]*f)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 483

Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_)^(n_))^(q_.))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Dist[e^n/b, Int[
(e*x)^(m - n)*(c + d*x^n)^q, x], x] - Dist[(a*e^n)/b, Int[((e*x)^(m - n)*(c + d*x^n)^q)/(a + b*x^n), x], x] /;
 FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1] && IntBinomialQ[a, b
, c, d, e, m, n, -1, q, x]

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 4141

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((d*ff*x)^m*(a + b*(1 + ff^2*x^2)^(n/2))^p)/(1 + ff^
2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])

Rubi steps

\begin {align*} \int \frac {\tan ^2(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^2}{\left (1+x^2\right ) \sqrt {a+b \left (1+x^2\right )}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\operatorname {Subst}\left (\int \frac {x^2}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}-\frac {\operatorname {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {\operatorname {Subst}\left (\int \frac {1}{1+a x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}+\frac {\operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}\\ &=-\frac {\tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{\sqrt {a} f}+\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{\sqrt {b} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 2.71, size = 0, normalized size = 0.00 \[ \int \frac {\tan ^2(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Tan[e + f*x]^2/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

Integrate[Tan[e + f*x]^2/Sqrt[a + b*Sec[e + f*x]^2], x]

________________________________________________________________________________________

fricas [B]  time = 0.91, size = 1259, normalized size = 15.74 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^2/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/8*(sqrt(-a)*b*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2
*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*c
os(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*co
s(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)
^2)*sin(f*x + e)) - 2*a*sqrt(b)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a
 - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*
b^2)/cos(f*x + e)^4))/(a*b*f), 1/8*(4*a*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(
-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e))) - sqrt(-a)*b*log(12
8*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a
^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^
3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*
a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)))/(a*b*
f), 1/4*(sqrt(a)*b*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f
*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3
*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) + a*sqrt(b)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos
(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2
)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4))/(a*b*f), 1/4*(sqrt(a)*b*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a
*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2
*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) + 2*a*sqrt(-b)*arctan(-1/
2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f
*x + e)^2 + b^2)*sin(f*x + e))))/(a*b*f)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \left (f x + e\right )^{2}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^2/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(tan(f*x + e)^2/sqrt(b*sec(f*x + e)^2 + a), x)

________________________________________________________________________________________

maple [C]  time = 1.52, size = 404, normalized size = 5.05 \[ \frac {2 \sqrt {2}\, \sqrt {\frac {i \sqrt {a}\, \sqrt {b}\, \cos \left (f x +e \right )-i \sqrt {a}\, \sqrt {b}+a \cos \left (f x +e \right )+b}{\left (1+\cos \left (f x +e \right )\right ) \left (a +b \right )}}\, \sqrt {-\frac {2 \left (i \sqrt {a}\, \sqrt {b}\, \cos \left (f x +e \right )-i \sqrt {a}\, \sqrt {b}-a \cos \left (f x +e \right )-b \right )}{\left (1+\cos \left (f x +e \right )\right ) \left (a +b \right )}}\, \left (\EllipticPi \left (\frac {\left (-1+\cos \left (f x +e \right )\right ) \sqrt {\frac {2 i \sqrt {a}\, \sqrt {b}+a -b}{a +b}}}{\sin \left (f x +e \right )}, \frac {a +b}{2 i \sqrt {a}\, \sqrt {b}+a -b}, \frac {\sqrt {-\frac {2 i \sqrt {a}\, \sqrt {b}-a +b}{a +b}}}{\sqrt {\frac {2 i \sqrt {a}\, \sqrt {b}+a -b}{a +b}}}\right )-\EllipticPi \left (\frac {\left (-1+\cos \left (f x +e \right )\right ) \sqrt {\frac {2 i \sqrt {a}\, \sqrt {b}+a -b}{a +b}}}{\sin \left (f x +e \right )}, -\frac {a +b}{2 i \sqrt {a}\, \sqrt {b}+a -b}, \frac {\sqrt {-\frac {2 i \sqrt {a}\, \sqrt {b}-a +b}{a +b}}}{\sqrt {\frac {2 i \sqrt {a}\, \sqrt {b}+a -b}{a +b}}}\right )\right ) \left (\sin ^{2}\left (f x +e \right )\right )}{f \sqrt {\frac {b +a \left (\cos ^{2}\left (f x +e \right )\right )}{\cos \left (f x +e \right )^{2}}}\, \cos \left (f x +e \right ) \left (-1+\cos \left (f x +e \right )\right ) \sqrt {\frac {2 i \sqrt {a}\, \sqrt {b}+a -b}{a +b}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^2/(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

2/f*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(
I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*(EllipticPi((-1+cos
(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b
^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))-EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(
1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/
((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)))*sin(f*x+e)^2/((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(1/2)/cos(f*x+e)/(-1+
cos(f*x+e))/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \left (f x + e\right )^{2}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^2/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(tan(f*x + e)^2/sqrt(b*sec(f*x + e)^2 + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {tan}\left (e+f\,x\right )}^2}{\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)^2/(a + b/cos(e + f*x)^2)^(1/2),x)

[Out]

int(tan(e + f*x)^2/(a + b/cos(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan ^{2}{\left (e + f x \right )}}{\sqrt {a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**2/(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(tan(e + f*x)**2/sqrt(a + b*sec(e + f*x)**2), x)

________________________________________________________________________________________